

Enhancing Data Security with Dynamic
Authorization: A Guide to Mitigating
Data Access Vulnerabilities with PlainID

​

TABLE OF CONTENTS
Policy-Based Access Control: And Its Importance to Protecting Data​ 3

Why PBAC?​ 3
The Problem​ 4

Where are the Gaps?​ 5
How Does PlainID Address Data Access Control?​ 6

Key Components of PlainID’s Dynamic Authorization Service Architecture​ 6
The architecture has several key components:​ 7

PBAC for Data Access Control​ 7
PlainID for Data Access Control​ 8

How to Setup and Configure PlainID Components​ 9
How to Build a Policy​ 10
Users (Who)​ 11
Assets (What)​ 12

Connecting the Database Structure to PlainID Assets​ 13
Table Asset Mappers​ 13
Columns/Keys Asset Type​ 14

See The End Result​ 15
WHO​ 16
WHAT​ 16
Evaluation​ 17

Conclusion​ 19

Policy-Based Access Control: And Its Importance to

Protecting Data

Everything is Data. While this phrase may be a generalization, it holds true. In today's digital
world, everything ultimately boils down to entries in some form of data medium. Streaming
movies? That’s just accessing media data in a sophisticated way. Checking your bank account?
You're retrieving rows in a database. Moving money or purchasing stocks? These actions
translate to updating data entries.

Organizations rely on vast amounts of data to fuel decision-making and innovation. However,
without robust access control mechanisms, this data is unnecessarily exposed to risk. Often,
discussions about data security center on protecting the database itself—through encryption,
hashing, or permissions at the table or column level. Yet, this narrow focus overlooks the critical
need to protect data consistently across every layer of the technology stack. Organizations
inadvertently overexpose data by relying solely on the databases’ permissions and security
mechanisms, leaving vulnerabilities throughout their systems.

These gaps have real-world consequences. In 2022, 70% of breaches were attributed to
unauthorized access, highlighting the shortcomings of conventional security measures in
addressing sophisticated attack vectors. This alarming trend underscores the need for granular,
context-aware data security strategies to effectively mitigate unauthorized access risks.

This is where Policy-Based Access Control (PBAC) becomes essential. PBAC enables
organizations to implement dynamic, context-driven security policies, ensuring data is protected
consistently across the tech stack.

Why PBAC?

●​ Identity-Aware Authorization: PBAC leverages identity attributes—such as user roles,
departments, and contextual factors—to make access decisions that are highly specific
and relevant. This ensures that only the right individuals access the right data at the right
time.

●​ Granular Access: Policies are designed to align with organizational objectives and
compliance requirements, ensuring precise control over operational data.

●​ Enhanced Security: Contextual policies account for factors like user location, device
security, or data sensitivity, reducing the risk of unauthorized access.

●​ Scalability: PBAC automates and centralizes access management, making it adaptable
to the needs of growing organizations.

By implementing identity-aware, policy-driven authorization, PBAC empowers organizations to
harness their operational data securely and effectively, driving innovation while maintaining
compliance.

The Problem

To truly understand the problem with our current mindset that data security is solely in the
database, we will need to break down a typical business case and show its components. Take a
typical (simplified) tech stack:

Imagine a banking application designed for portfolio or wealth managers at a financial firm.
When a user logs in, they see a tailored set of accounts or portfolios they have permission to
access.

How does this process work behind the scenes?​
Here’s what happens step by step:

1.​ User Authentication: The application consumes the IDP token to identify the logged-in
user.

2.​ API Request: The application makes a REST call to an API endpoint, such as
/accounts, exposed by the API gateway.

○​ (If you've read earlier content on securing APIs and addressing BOLA/BOPLA
issues, you’ll understand the importance of protecting such endpoints to avoid
exposing all accounts unnecessarily.)

3.​ Microservice Trigger: The API call triggers a microservice, which connects to the
database using a service account.

4.​ Database Query: The microservice queries the database to retrieve only the accounts
the user is authorized to access.

5.​ Response Assembly: The retrieved data is formatted into a JSON object and returned
to the application.

6.​ User View: The application displays the relevant accounts or portfolios to the user.

This streamlined process highlights how secure data access works, from authentication to the
user interface, ensuring proper permissions are maintained throughout.

Where are the Gaps?

When deciding how to protect this data, there are three common approaches to consider, each
with a critical flaw.

1. Traditional Data Access Control Products

In traditional data access control strategies, the protection of account data is handled at the
database level. Permissions for viewing the account table and any restrictions on users are
defined as database policies or rules. However, this approach has a key limitation: the database
can only enforce policies on users with database accounts. In most cases, portfolio managers
do not have database accounts, so the database cannot directly enforce granular data access
controls for them. That said, database policies can still support this use case indirectly. They can
limit the access of the service account connecting to the database, ensuring it has only the
permissions necessary for all application users. While this does not provide identity-aware
controls for portfolio managers, it does help narrow the service account’s access.

2. API and Service Mesh layer Protection: Protection at the API and microservice layers
works well for safeguarding digital assets and small-scale data interactions. For example, API or
service mesh enforcement would be ideal if this use case involved viewing a single account or
making a specific trade. Trades, for instance, boil down to updating rows in a database after
passing through the appropriate layers. Our previously published API white paper explores
numerous scenarios where API and service mesh protections are suitable, demonstrating their
effectiveness for focused data actions.

3. Embedded/Coded Enforcement in the MicroService: Embedding data access control
directly within the microservice is a popular approach. While this method offers strong technical
protection—since anything can theoretically be coded—it falls short in key areas:
manageability, visibility, auditability, and scalability.

This simple use case involves a single microservice, but most modern applications consist of
40–50+ interconnected microservices. Managing access policies in such a decentralized
environment becomes chaotic. Centralized policy management is essential for maintaining
consistency and sanity in a standard tech stack.

Another significant challenge arises when policies need to change. For instance, if the business
decides that "Portfolio managers can see all portfolios assigned to them" should change to
"Portfolio managers can see all portfolios in their region, state, or wealth management range,"
the embedded approach requires updating code across multiple microservices. This lack of
flexibility and centralization makes the method unsustainable for dynamic environments.

How Does PlainID Address Data Access Control?

PlainID's Dynamic Authorization service provides a robust solution that dynamically adjusts
access controls and permissions in real-time, ensuring secure and appropriate access across
various resources within an organization's digital ecosystem. This service empowers
organizations to implement fine-grained access policies that respond immediately to changes in
user roles, contexts, or actions, enhancing security while supporting compliance and operational
efficiency.

Key Components of PlainID’s Dynamic Authorization Service Architecture

PlainID’s architecture is designed to be highly adaptable, ensuring seamless integration with
existing IT infrastructures while providing comprehensive access control capabilities.

The architecture has several key components:

●​ Policy Decision Point (PDP): The Policy Decision Point is at the heart of the
architecture, which is responsible for making real-time authorization decisions. The PDP
evaluates access requests against the defined policies, considering the current context
and attributes associated with each request.

●​ Policy Administration Point (PAP): The Policy Administration Point provides a
centralized interface for creating, managing, and updating access policies. Utilizing a
user-friendly graphical interface, the PAP enables technical and non-technical
stakeholders to define access rules and policies.

●​ Policy Information Point (PIP): This component retrieves relevant attribute data from
various sources within the organization’s IT environment. The PIP supplies the PDP with
the necessary contextual information and attributes required to make informed
authorization decisions.

●​ PlainID Authorizers (PEP): Located at the access request points within the system, the
Policy Enforcement Point intercepts access requests and forwards them to the PDP for
evaluation. Once a decision is made, the PEP enforces it by granting or denying access
based on the PDP’s decision.

PBAC for Data Access Control
PlainID's methodology in protecting data against overexposure and unauthorized access is
distinguished by its PBAC implementation. This approach is bolstered by deploying authorizers
in strategic locations such as inside the application libraries, as a plugin inside a data access
layer, or even as a helper service in the microservice layer. Such a design ensures a thorough

security measure spanning across various layers of the digital infrastructure to prevent
unauthorized access effectively.

By integrating Authorizers within these critical points, PlainID offers a layered defense strategy.
This enhances the security of applications against sophisticated threats and vulnerabilities,
ensuring that access controls are precisely applied and managed across different levels of the
application stack.

PlainID for Data Access Control

Policy Administration Point: By leveraging the Policy Administration functionality, PlainID
allows organizations to craft policies that directly address vulnerabilities introduced by relying
solely on niche Data Access Products. These policies can define precise access controls,
specifying which users can access which pieces of data, both column and row protections, and
how, allowing you to provide data masking.

Policy Information Point: The Policy Information component plays a crucial role in collecting
up-to-date information about users and the data being accessed. The Policy Information Point
can be integrated with your data cataloging solution to make sure that data is protected
appropriately by its label and the compliance rules associated with it. This ensures that all
access decisions are made based on the latest context and categorizations enhancing security.

Policy Decision Point: With the Policy Decision functionality, PlainID evaluates access
requests against the defined policies, considering the current information about the user and the
collection of data they are trying to access. It makes informed decisions on whether the

requester should be allowed to access the specific set of data as well as which pieces in the
data set they should be allowed to see.

Data Access Enforcement: Finally, the Authorizers enforce these access decisions, ensuring
that only valid and authorized data requests are executed. These mechanisms are pivotal in
preventing unauthorized access to data:

●​ Data Access Layer Authorizers: these are plugins that are installed directly into your
Data Access Layer product. These plugins intercept the SQL call sent to the Data
Access Product and can manipulate the SQL statement itself based on authorization
rules. Go from “select * from clients” to “select * from clients where region.client = ‘US’”
without having to change a single line of code in your entire environment.

●​ Data Access Libraries: These PlainID libraries are built to interface with two of the most
popular frameworks for accessing data (Spring and .NET). Once included within an
application, these libraries will override the access controls in the framework and inject
PlainID, allowing PlainID to enforce that only authorized SQL statements are run against
the database. While this does require the application to be redeployed, it does not
require any code to be changed.

●​ SQL Authorizer: The PlainID SQL Authorizer is a companion service designed for
seamless deployment within an environment. It enables organizations to enhance data
security by sending SQL statements to the service along with the identity of the user
requesting the data. The Authorizer then modifies the SQL query to enforce user-specific
authorization, returning a fully-formed query that ensures access is tailored precisely to
the user's permissions.

●​ JSON Authorizer: The PlainID JSON Authorizer is primarily designed for use in API and
Service Mesh environments but can also control access to data. For instance, in the
earlier example, data retrieved from the database was transformed into a JSON object
before being sent to the application layer. The PlainID JSON Authorizer could integrate
with the service mesh or API Gateway to redact any unauthorized information from the
JSON response, ensuring the user only receives data they are permitted to access.

By integrating these components, PlainID offers a dynamic and robust solution to safeguard
against vulnerabilities, ensuring that access to data through the many egresses of your
ecosystem are protected. What makes PlainID unique is that although there are a few different
avenues to protecting data as mentioned above. All of this is boiled down to managing a few
policies. The policies themselves are not dependent on which type of enforcement (or
authorizer) is used in the solution.

How to Setup and Configure PlainID Components
In this next section, we will review the steps to mitigate these vulnerabilities with PlainID.

●​ How to build a policy in PlainID that protects a digital asset
●​ How to use PlainID building blocks of assets and Data Mappers to teach PlainID how

that digital asset is represented in the Database

●​ How Authorizers work in this specific interaction

In the sections, we will use a sample use case for protecting retail bank accounts, controlling
who can view the balances, and allowing transactions to and from the bank accounts.

See below for the sample architecture:

How to Build a Policy
Building a policy in PlainID involves a series of steps designed to tailor access controls precisely
to your needs.

1.​ Define the subjects (ie. who) the policy applies to, such as users or groups.
2.​ Specify the actions (ie. what) these subjects can perform such as read, write, or delete.
3.​ Determine the resources (ie. on what assets) these actions can be applied to, such as

specific files or databases.
4.​ Set the conditions (ie. when) under which these permissions are valid, potentially

including time-based restrictions or context-specific rules.

This structured approach ensures a robust and flexible implementation of access control
policies.

In this example, the policy used is represented in plain language as:

●​ “Portfolio Managers can view – all Portfolios that have been assigned to them in the
CRM.”

For more in-depth information on policy creation and best practices, please see the PlainID
Policy Administration guide.

Users (Who)
Contained within each policy is a ‘Who’ section, a place to choose which Dynamic Group this
policy will be granted access for. It is important to know that there are no “users” in PlainID when
configuring a Dynamic Group. You are configuring a set of logic that will run at runtime to
determine if the user attempting an action matches any policy. In the example above, we will
configure a Dynamic Group of customers. To determine if a person is a customer, we will have
the PIP configured to look in the CIAM user database and see if they exist there. It is always the
job of the PIP to fetch any and all Identity fabric information from any source or several sources
and normalize it for the PDP to use. For more information on configuring the identity workspace
and the PIP, please refer to our official documentation.

https://docs.plainid.io/docs/policies
https://docs.plainid.io/docs/policies
https://docs.plainid.io/docs/policy-information-point-pip-1

Assets (What)
Contained within each policy is an asset you are granting access to – this is where the PlainID
solution starts to differ from others and why it can solve the gaps in data access. In PlainID, an
asset is the digital asset you want to protect. While this whitepaper refers to database tables,
the database tables are not the asset.

The asset represents the digital record you aim to protect, such as a bank account, insurance
claim, or healthcare record. SQL serves as the mechanism to query this data while enforcing
access controls.

In this example, we’ll configure the assets in PlainID using Portfolios as a placeholder. This
involves connecting the PIP (Policy Information Point) to the Portfolio Account Database,
which stores details like account numbers, current balances, and transaction history.

For our use case, PlainID will be configured to fetch the accountNumber, ensuring that the
user attempting to view account details is explicitly assigned to work on that account.

Connecting the Database Structure to PlainID Assets
Now that we have our basic building blocks and have built and tested our policy to see that an
end user can view and make transactions against their own bank accounts using the PlainID
Policy Simulation tool. Now, we connect our Data structures to our policy structures. This is
done using what PlainID calls Table Mappers. For more information, please see the official
documentation.

Table Asset Mappers
The PlainID Asset that represents the accounts will be used to apply row-level filtering to the
SQL queries that need to be executed on behalf of the user. For instance, in the example
above, this will eventually turn a generic base SQL query that would be the base for all
Customer data being pulled out of the database to one that is specifically crafted for the
authenticated user and respects the authorization policies, making sure that data only
authorized to be viewed by the user comes back. An example base SQL query would be `select
first_name, last_name, account_number, account_balance from postgres.public.accounts`
eventually this will need to be changed to `select first_name, last_name, account_number,
account_balance from postgres.public.accounts where accountOwner =
{{logged_in_username}}` the issue you can see arising is that the table name and the asset
name are not always so cut and dry simple.

Table Mappers are the bridge from the technical world to the business world. In the business
world, we know we need policies to protect accounts and data associated with those accounts,
but in the technical world, that might be bankingdatabase.prod234f.prod_accounts_table or
something even more obscure.

With PlainID, you can create and test your policies as we have done before, then come back
and configure the Table Asset Mappers, which can help PlainID understand that the accounts
table is in one or many databases, all of which need to be governed by the same set of policies.

https://docs.plainid.io/docs/about-api-mappers

This configuration will help PlainID use the information in the base SQL query sent to the
authorizer to determine which policies should be evaluated. The evaluation of these policies is
what will drive everything from redaction and masking in JSON to row filtering and column
masking in SQL statements.

Columns/Keys Asset Type
PlainID can also add masking or redaction of columns or JSON keys; to do this we will create
another Asset Type in PlainID that is representative of the specific data inside the table or JSON
objects we wish to apply data access control on. The way to think about it is which accounts we
want to give someone access to are controlled by policies that grant actions (such as “view”)
over the Accounts Asset Typ,e which is mapped to the various tables and can be paired with
which elements under that account the end user should have specific actions over such as
“view” or even “view as masked”. This Asset type will be another “What” we attach to the policy
from above. Taking a look at the Column/Key Asset Type we will use in this example looks like
this.

In this example, you will also notice that classification is an attribute tied to all the columns and
keys. This is because, similar to the Accounts Asset Type where the information comes from the
Accounts table in the Columns/Key Asset Type the information used in the policy evaluation is
coming from a Data Governance Catalog. This allows enterprises to apply Data Compliance
Policies while applying identity-aware security to their ecosystem.

See The End Result
Now that we have everything in our policies, from which Accounts a user can see to which
information (columns or keys) users can view, let's see a policy in action. This Policy states that
“Wealth Managers Can View and Trade on Accounts Assigned to Them.” It protected the
same assets as the policy above, with end users being able to view their accounts but has the
added pieces for ensuring that the Wealth Managers can not see any data in the accounts not
pertaining to their job.

WHO

WHAT

Evaluation
Let’s use PlainID Policy Simulator to test the Policy without needing to know the technical side
of the use case first.

As you can see from the image Sara.Jameson who is our wealth manager in this use case has
access to quite a few accounts. In this case she should be able to view accounts
8,11,13,20,45,1776. And, this access was granted by the Policy we looked at in the previous
section.

Now that we know our policy is acting in accordance with the business. Let’s see how PlainID
works at applying this Policy to the protection of data. If you recall from the Problem section
where we lined up the environment for this use case, we have an application triggering a REST
call to get all the accounts the end user should be able to access. This, in turn, triggers a
microservice whose job is to get data out of the database. For the following example, we will
pretend to be that microservice. This microservice will be integrated with PlainID and knows that
when an end user is requesting to see accounts, it should reach out to PlainID and use its
service to get an authorized fully formed SQL query as outlined in the “PlainID for Data Access
Control” section. The microservice will send the end user’s JWT token that was passed to it
from the application through the API and its base query ‘select firstname, employer,
account_number, age, email from accounts’ to the PlainID SQL Rewrite authorizer and receive
the SQL statement it should run against the database in return.

As you can see here, the where clause was added in accordance with the same accounts you
saw in the policy simulator used by the business to test the policies, and the employer name of
the user who owns the account will be masked using a stored procedure in the database. The
microservice will then run this SQL statement instead of the base one.

Conclusion
PlainID's Dynamic Authorization Service, consisting of Policy Decision Points, Policy Information
Points, Authorizers, and API Mappers within a Policy-Based Access Control framework, offers a
sophisticated solution to address Data Access control vulnerabilities that revolve around
identity-aware security controls. By leveraging real-time data and policy-driven decision-making,
PlainID ensures that only authorized access to data occurs, effectively mitigating risks due to the
gaps in protecting operational data using identities not part of the Data Mediums. This significantly
enhances an organization's identity security posture and closes significant gaps in cybersecurity by
ensuring granular, real-time authorization decisions, which protect against unauthorized access and
data breaches.

	
	
	Enhancing Data Security with Dynamic Authorization: A Guide to Mitigating Data Access Vulnerabilities with PlainID
	Policy-Based Access Control: And Its Importance to Protecting Data
	Why PBAC?

	The Problem
	Where are the Gaps?

	How Does PlainID Address Data Access Control?
	Key Components of PlainID’s Dynamic Authorization Service Architecture
	The architecture has several key components:

	PBAC for Data Access Control
	PlainID for Data Access Control

	How to Setup and Configure PlainID Components
	How to Build a Policy
	Users (Who)
	Assets (What)
	Connecting the Database Structure to PlainID Assets
	Table Asset Mappers
	Columns/Keys Asset Type

	See The End Result
	WHO
	WHAT
	Evaluation

	Conclusion

